
Bug Tracker Workflow in GForge
Contents

General
Life Cycle of a bug
Build Query Tool
Bug Tracker

The following is a description of the standard practice for using the GForge Tracker system for caCORE 3.x and initial 4.x releases.

General
Trackers

Support - use only if extended support is needed, write it like a bug report (can be escalated to a bug by QA)
Bugs - Location where all changes to artifacts are recorded

To avoid duplicates and confusion, only post something after you have run it by the QA people.
Developers, QA, and Project Manager should use the query tool to make a view that shows only the bugs relevant to
you or your situation.

Feature Requests - Location where new features can be requested by anyone with permission to post
Not used as forum, only with refined thought out requests
Once approved, Feature Requests can be escalated (moved) to the "Bug Tracker" via the "Data Type" field.

Forum - Used to discuss feature requests, future builds, etc.

Life Cycle of a bug
QA submits bug

QA must submit a bug for every change in the software (almost a task tracker). Thus, when a code change is finished, QA knows
to test it.
Only submit a bug if you have run it by someone in the QA team

Developer chooses highest priority bug and fixes it
Developer then does the following:

Checks in code
Enters how they fixed the bug into the "Comments" field (if necessary)
Marks the bug's status "For Review"
Changes "Assign To:" to the QA that posted the bug

A new build is made
QA Tests the fixes

If fixed, change "State" field to "Closed"
(optional) change the "Assigned To" field to "Nobody"
(optional) change the "Status" to "Fixed"
If not fixed:

Change "Status" to "Open"
Add a comment to the bug that provides more detail on how it is still a problem
Change "Assigned To:" field to the developer

Build Query Tool
Since it is likely that we will have hundreds (maybe thousands) of bugs in the system, we need a way to view only the bugs we are interested in.
The Build Query tool is the way to eliminate from your view any bug reports that you don't want to see. For example, a developer is not
necessarily interested in bugs involving other developers or bugs from previous versions. To filter out only the bugs relevant to them for the
current release, they create a custom query. To create their query, they would do the following

Select the Bug Tracker
Click on "Build Query"
Select his/her name in the "Assign To:" field
Select the current build (3.1 for example) for the custom field "Assigned Release"
Select "Open" for the "State" field (you wouldn't want to see closed bugs because they are resolved).
Select the "Save" button at the top

The query you made will be saved and can be used/modified at anytime. The query tool is particularly useful for a status meeting. You can



prepare a print out of only the current bugs in a certain modules (Product, category, etc.).

Bug Tracker
Phase - Indicates the phase in which the bug was found

Integration Test
Integration Test - QA
System Test
System Test - QA
Internal User Acceptance
External User Acceptance
Release Candidate
QA Testing
User Acceptance Test
Production

Status - this field, in combination with the "State" field, tell you exactly where the bug is in the life cycle of a bug.
None (automatically provided) - means that the bug is new and has not been addressed by the developer
Open - work in progress or was fixed then re-opened
For Review - developer marks this when:

Bug has been fixed by developer
Code is available to QA for verification (checked in)
Explanation/method for fix has been written in "Comments" field (if necessary)
Assigned To" has been changed to QA member that posted the bug

Cannot Reproduce - developer cannot reproduce the error
Developer changes the "Assign To:" to the QA that submitted the bug
QA needs to try to reproduce the bug. If they can't, then change the "State" to "Closed". If they can, mark "Status" to
"Open" and add a comment or bring developer over to show them the bug.

Deferred - Developer marks this when they believe fixing this bug should wait till a future release.
Developer then marks why in the "How Fixed" text area. (optional)
Developer then changes the "Assigned To" field to the Project Manager or QA
If QA/Project Manager decides to not fix the bug in this release, then change the "Assigned Release" to "Future
Release" and leave the "State" = "Open".

Invalid - bug is not a bug. That function works as it was intended.
Developer should send back to QA with comments explaining why invalid
If QA agrees, close the bug

Duplicate - bug exists somewhere else
Add comment giving bug # that it duplicates (ideally)
QA change the "State" to "Closed"
QA change "Assign To:" to "Nobody"

Release Note Candidate - indicates the issue needs to be documented as a known issue for that release
Once marked as a Release Note Candidate, Assign To the person that will change the documentation. DO NOT CLOSE
THE BUG YET!
QA may need to re-enter a duplicate of the bug as a "Future Release" bug. That way it is recorded as a known issue for
the current release, but a bug to be fixed for a future release also.
Once documents have been changed, close the bug

Awaiting Response - The bug is on hold till something happens to allow it to be worked on.
Fixed - (optional) Bug has been resolved or completed. This serves the same purpose as changing the "State" to "Closed" but is
there for clarity. Thus it is optional.

Developers should not ever mark this (use "For Review" instead)
QA marks this only after bug has been confirmed fixed (Reviewed)
QA should change the "State" to "Closed"

Severity - Indicates the effect of the bug on the system. NOTE: Though a bug may be major, like a crash, does not mean it will always be
high priority and visa versa.

Critical - Causes a crash or data loss with no work around
Major - a bug that effects important functionality, No Work Around - No data loss
Normal - Work around exists
Minor - small effect on the software

State (automatically provided)
Open - this bug has not been resolved or seen to its completion (Open by default)
Closed - ONLY QA or Project Manager can change this to closed! It means the bug has been resolved completely and doesn't
need to be seen anymore.

Assigned Release - The target release version for the bug to be fixed (i.e. 3.1)
Component - This field separates out the program into traceable parts. Each project will need to add their own elements to this. Some
projects may want to add another custom field that sub-categorizes the program. The purpose of this field is to allow us to view (using the
"Build Query" tool) all the bugs within only a single portion of the software or track how many bugs were generated for one tool as
compared to another.
Assign To (automatically provided) - Person currently responsible for processing the bug

As long as the bug is still open ("State" = Open), the person marked here is responsible for processing it.
Priority (automatically provided) - Assigned by QA initially, decided upon in group meeting with Project Manager, 1 - lowest, 5 - highest.
Summary (automatically provided) - one sentence description
Detailed Description (automatically provided) - Steps to reproduce, suggestions, and references not included in drop-down
Attach File (automatically provided) - screen shots, etc.



File Description (automatically provided) - description of attached file
Version Found - Text field that gives the exact build revision label in which the bug was originally found (i.e. 3.1.2.9).
Previous Build Tested - Since bugs are often re-opened, this text field provides the exact revision label that was tested last (not always
the original revision label).
Comments (automatically provided)

If necessary, Developers record how they fixed the bug (this helps QA verify the fix)
Enter comments on modifications made to the bug report. For example, "Changed priority to 5"

Type
Code - error found in code using white box testing or code review
Cosmetic - requires only a minor change to the UI
Performance - software responds too slowly
Documentation - Error in some documentation (not code)
Usability - a behavior in the software that makes it hard to use
Incorrect Functionality - most common type of bug, use when an already specified function is not working as intended
Feature Request - an element to the program that has not currently in the program and has not previously been documented as
a functional requirement.
Data Corruption - problem with the database

Estimated Resolution Time - When the Developer first views the bug, they mark the estimated amount of time required to fix the bug.
(Text Field)


